Lecture 18

Chemical Engineering for Micro/Nano Fabrication

John William Strutt, third Baron Rayleigh, 1842-1919

The Nobel Prize in Physics 1904

$$\mathbf{R} = k_1 \frac{\lambda}{n \sin \theta}$$

Rayleigh's Rule for Resolution

Lord Rayleigh defined this criterion: when the first minimum of one Airy disk coincides with the maximum of another -> $0.6 \lambda/NA$

Defining the resolution of an imaging system

- When a single point of light is imaged it becomes the point spread function (PSF) of the lens system.
 - For an ideal, circular imaging system, the PSF is called the Airy disk:
 - The FWHM of the Airy disk is $0.5 \lambda/NA$, which defines the smallest image of a point source

 $PSF = \left| J_1(2\pi rNA / \lambda) / \pi r \right|^2$

Lithography breaks Rayleigh's rule

Threshold like Response of ArF Resist

enables breaking Rayleigh's rule

Pitch divisionBreaking Rayleigh's Rule!

Conventional Resist System

The frequency on the wafer plane is **SAME** as that on the mask.

Pitch Division Approach

Resist

Profile

One space on the mask prints **TWO** spaces on the wafer plane.

Dual Tone Resist- an unusual response

Photoactive System And Mechanism

Photobase Generator (PBG)

Houlihan et al., *Macromolecules*, **21** (1988) 2001-2006. Cameron et al., *J. Am. Chem. Soc.*, **113** (1991) 4303-4313.

A Test Formulation

CONDITIONS:

- 6.5 wt% of PAG to polymer
- PBG/PAG molar ratio = 3
- PEB: 121.5 °C, 60 sec
- BARC (89 nm)

Lithography Result

Poor edge definition due to Low chemical contrast?

Increase Chemical Contrast (Acid Gradient)

Conventional PBG

2-Stage PBG

$$PBG \xrightarrow{hv} Base$$

$$L - PBG \xrightarrow{hv} PBG \xrightarrow{hv} Base$$

Improving Chemical Contrast

DOSE

An interesting observation on oxime esters: Aromatic Undergoes Rapid Photolysis at 248nm

Photoaromatization

Contrast curve under 193nm

ChE 384T / 323

Y

Hagiwara, Y; Mesch, R; Kawakami, T; Okazaki, M; Jockusch, S; Li, Y, Turro, NJ; and Willson, CG. JOC Vol. 78(5), p1730-1734, Turro, NJ; Li, Y; Jockusch, S. Hagiwara, Y; Okazaki, M; Mesch, R; Schuster, D and Willson, CG. JOC Vol. 78(5) p1735-1741, 20:

Sadly quantum efficiencies lead to pseudo 1st order kinetics.

Toward the difunctional PBG

Close pK_a presents a synthetic challenge

Entry	Base	Solvent (M)	E ⁺ (equiv)	T °C	% Yield
1	KHMDS	tol	2.0	0 - RT	0
2	KHMDS	THF	1.5	0 - RT	0
3	KHMDS	tol	4.0	RT	0
4	sec-BuLi	THF	1.5	-78 - RT	- 0
5	n-BuLi	tol	1.5	-78 - RT	- 0
6	TEA	tol	1.1	110	0
7	DBU	tol	2.0	110	0

CHA-BisMeNO2

Quantum efficiency by HPLC analysis

Quantum efficiency for first stage is only ~1.3x the second Efficiency based upon valerophenone standard.

Lithographic Demonstration of Principle

CD

103

113

Ρ

Ν

LWR

12

44

LER

9

23

CD	LWR	LER
100	9	6
110	17	12
	CD 100 110	CD LWR 100 9 110 17

ChE 384T / 323

CD

202

LWR

12

LER

8

100 cm

Ρ

Mag = \$3.00 K.X.

Pitch Doubling in Negative Tone at i-Line

Early proof of concept data Ji Yeon Kim

Pitch Doubling in Positive Tone at i-Line

Early proof of concept data Paul Meyer

